Final Examination, 10 May 1999
SM3110 (Spring 1999) (Solutions)

The following formulas may be useful to you:

a)y{Cv-dr://Sva-dA,

b) p(%—:—l—VV-v):—prLuAv—i—pF, div v =0.
_1op 0%u _ 1op 0% _ 1op
C) —fU——;a—x—FAVﬁ, fu-—;a—y+AV@, 0——55—
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1. (a) Let v = (zy,asin(zy), z4/x) where a ia constant. Determine a so that the divergence of
v at the point P = (4, —1, %) vanishes.
Solution: div ((zy, asin(zy), z4/z) = 3?;’) + 8“;;(“’) + az‘f =V +y+azcos(yz).
Evaluating this expression at P = (4, —1, ) and solving the result for a leads to a =
_4\/3

(b) v = (y?,—22,0). Find the curl of v. Is this flow irrotational anywhere?
Solution: V x (y? —2,0) = (0,0, —2z — 2y). The flow is irrotational along the plane
r+y=0.

(c) Prove the identity V x V¢ = 0 if ¢ is an arbitrary function of z, y, and z.
Solution: V x V¢ =V x ((£2, g—z’, 92)). The first component of this vector is g;g; - a‘fg’y
which is zero for smooth functions. The other two components are zero similarly.

2. Verify by direct differentiation if

(a) u(z) = €?* cos 2z is a solution of " + a*u = 0 for any a.

Solution: u""(z) = —64€®* cos2z. So v + a*u =0 if a®* = 64 or if a = +8.
(b) u(z,y) = sinx cos2y is an eigenfunction of the Laplace operator —3‘9—; - g—;. What is
the eigenvalue?
Solution: Let u(z,y) = sinz cos2y. Then
*u  O%u

—(@ + 0—y2) = 5sin z cos 2y.

So A =5.
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3.

(a)

Give a parametrization for the plane that passes through the points (—1,1,0), (0,2, 2),
and (1,0, 1).

Solution: The equation of the plane is of the form Ax + By + Cz = D. Substituting
the three points (—1,1,0), (0,2,2) and (1,0, 1) in the equation we get the following three
equations in terms of A, B, C, and D:

(x) —A+B=D, 2B+2C=D, A+C=D.

Adding the first and the third equation leads to B + C = 2D which, when compared
with 2B+2C = D (see (*)), results in D = 0. The relavant equations in (*) now become
A=Band C = —B. Soz+y— z =0 is the equation of the plane. (Equivalently, we
can find the equation of the plane by constructing two vectors parallel to the plane from
the three given points. In this case, the two vectors are (1,1,2) and (1,—2,—1). Then
the cross product of these vectors, (3,3, —3), is normal to the plane.)

Finally, using the normal and the point (1,0,1) we get  + y — 2 = 0 to be the equation
of the plane, or equivalently, z = = + y. So

r(u,v) = (u,v,u+v)

is the parametrization of the plane.

Find a unit normal vector to the surface of the upper hemisphere of the Earth at the
point whose longitude and latitude are 60 and 30 degrees, respectively.
Solution: r(u,v) = (acosucosv,asinucosv,asinv), u € (0,27), v € (—
the parametrization of the upper hemisphere of a sphere of radius a. A norma
surface at any point parametrized by « and v is given by r, X r, which equals

T T :
5,5), 1S
1 to this
N=r, xr, =(—asinucosv,acosucosv,0) X (—acosusinv, —asinusin v, a cosv) =

a® cos v(cos u sin v, sin u sin v, cos v).

A unit vector in the direction of N is

(cosu cosw, sin u cos v, sinv),

which, when evaluated at v =  and v = %, yields
V3 31

n=(—,—-,-).
474’2

The function ¢(z,y) = ax’y® — by? + z is the potential for a velocity vector field v.
Determine the values of a and b so that the velocity of the particle located at (2, —1,1)
is zero.
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Solution: Because v = V¢ we have

v = (2axy® + 1, 2az’y — 2by)
Substitute (2, —1) into v:

V|@2,-1) = (1 + 4a, —8a + 2b)

which is 0 if ¢ = —i and b = —1.

The function ¥ (z,y) = ax? + zy + by? is the stream function of a velocity field v. Find
a and b so that the velocity of the particle located at (1,1) has magnitude 3.

Solution: Since ¢ = az? + xy + by?, then
v = (z + 2by, —2az — y).

Now, the velocity at (1,1) is v|i,1) = (1 + 2b, —2a — 1). After setting the magnitude of
this vector equal to 1 we get that (1 + 2b)* + (1 + 2a)? = 1.

Consider the velocity field v = z?zk. Determine the flux of this fluid through the
following two surfaces:
i. a disk of radius 1 in the zy-plane and centered at the origin.
Solution: The flux is zero since the integrand is zero on the xy-plane.

ii. a disk of radius 1 in the plane z = 1 and centered at the origin.
Solution: The parametrization of the disk is

r(u,v) = (ucosv,usinv, 1).

Sor, x r, = uk. Hence
1 27[' e
Flux = / / u® cos® vdvdu = ~.
o Jo 4

Compute the flux of vorticity of v = 9% through the surface of the upper hemisphere of
a sphere of radius 2 centered at the origin (Hint: Use the Stokes Theorem).

Solution: By the Stokes theorem, the flux in question is equal to [, v - dr where C' is
a circle of radius 2 in the zy-plane. Parametrizing this circle as r(t) = (2 cost, 2sint, 0),
we see that

2
/v-dr:—/ 8sin’ ¢t dt = 0.
C 0

6. Consider the following heat conduction problem:

Up = TUgg, u(0,t) = u(3,t) =0, u(z,0) = z(3 — z).
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(a) Use separation of variables and find the solution to this problem. Clearly indicate the
process of separation of variables and the Fourier Series method used in obtaining this
solution.

Solution: After using separation of variables, whose detail I will not elaborate on here,

we get
R 7’7,27|'2
u(z,t) = Z:Ane_7 7 sin .
n=1 3

The coefficients A,, are determined from

(u(z,0), sin "5%)
n2e sin "3ﬂ)

A, =

(sin
Using a calculator, we find that

A; =2.32211, A, =0, A;=0.0860041.

(b) Use the first nonzero term of the above solution and estimate how long it takes for the
temperature at z = 1.5 to reach 50 per cent of its original value.

Solution: Using only the first term of the Fourier Series solution, we have

7r2
u(z,t) = 2.32211e 5" sin %x

Now, u(%, 0) = %. So our problem reduces to determining ¢ so that

72t 9

232211 75" = 2.
¢ 8

It turns out that t = 0.0944059.
7. Let v = (2% + y?, 2zy) be the velocity field of a fluid. Compute the acceleration a of this flow.
Does a have a potential p? If yes, find it.

Solution: a = v - Vv = (2(2® + 3zy?),2(32%y + y*)). The curl of this vector is 0 so the
acceleration vector has a potential ¢. Since

0 0
() a—i = 2% + 62y, 8—5 = 622y + 2%,

we start by integrating the first equation with respect to = to get
1
6= 5ot + 3% + 1)

Next, we differentiat ethe second equation with respect to y and compare it with the second
equation in (**) to get that f'(y) = 2y® or f(y) = 3y* So ¢ = Fz* + 3z%y® + Ly*.
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8. Let € stand for the angular velocity of our planet.

(a) Noting that our planet rotates once every 24 hours, compute 2 where Q@ = (0,0,Q).
What are the units of 27

Solution: Q = 52— = 0.0000727221 rad/sec.

(b) Use this value of € and estimate the values in the centripetal acceleration € x (2 x r)
where r is the position vector to a typical point on the surface of the Earth. Assume
that the radius of the Earth is 6000 kilometers.

Solution: Let r = (z,y, z). Then
Q x (2 xr)=—(Q%,0%,0)

the terms Q%z and Q2y take on the largest values when z or y is 6000 kilometers. With
the value of Q found previously, 22z < 0.031731 meters per second per second, much
smaller than 9.8 meters per second per second, the acceleration of gravity.

9. Consider an incompressible fluid occupying the basin
D ={(z,y,2)[0 <z < H}.

Let v = (v, v2,v3) be the velocity field of a motion generated in D. Suppose that we have
been able to determine that

vi(z,y, 2) = 22y%,  wva(z,y,2) = —32°2,
but have only succeeded in measuring vs at the bottom of the basin and that this value is
7}3(377 Y, 0) =+ Y.

Determine v3 everywhere in D. (Hint: What does incompressibility mean mathematically?)

Solution: From the equation of incompressibility we have

8@1 61)2 61)3

%+0y+62_
or

01)3 . 01)1 81}2

Integrating this result with respect to z from 0 to z and using the value of v3 at z = 0 yields

vy = —2xy’z +x+y.
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10. A flow is called geostrophic if the velocity v = (u(z,y),v(z,y)) and the pressure gradient Vp
are related by

10p 10p

(% * ) —fU:—;%, fU:—;a—y,

where p, a constant, is the density of the fluid, and f is the coriolis parameter.

(a)

Assuming that f is constant, prove that the divergence of v must vanish.
Solution: From the equations of motion we have

1 dp 1@

——, U= —5.
pf Oy pf Ox

i — Ou | Ovs ich i
Now div v = 3> + ' which is equal to

1 10 _
pf 0xdy — pf dydx

when p is a smooth function.

Prove that the particle paths of a geostrophic flow and its isobars coincide.

Solution: Note that v-Vp = —rhlofg—Z% + rhlof%g—z = 0. So v and Vp are orthogonal.

Since Vp is orthogonal to isobars, and since v is tangential to particle paths, particle
paths and isobars coincide.

Consider a high pressure field in a geostrophic flow in the northern hemisphere (where
f > 0). By appealing to the equations in (***) explain whether this high pressure field
results in a clockwise or a counterclockwise motion.

Solution: Without loss of generality, assume that the high pressure occurs at the origin
of the coordinate system. Let P be a point in the first quadrant. Then Vp at P points
toward the origin because 0 is a maximum of p. Then % < 0 and g—z < 0 at P (draw
a picture to convince yourself of this). Going back to the geostrophic equations, u > 0
and v < 0 at P which indicates that the motion is clockwise.



